286 research outputs found

    Valence transition in the periodic Anderson model

    Full text link
    A very rich phase diagram has recently been found in CeCu2_{2}Si2_{2} from high pressure experiments where, in particular, a transition between an intermediate valence configuration and an integral valent heavy fermion state has been observed. We show that such a valence transition can be understood in the framework of the periodic Anderson model. In particular, our results show a breakdown of a mixed-valence state which is accompanied by a drastic change in the \textit{f} occupation in agreement with experiment. This valence transition can possibly be interpreted as a collapse of the large Fermi surface of the heavy fermion state which incorporates not only the conduction electrons but also the localized \textit{f} electrons. The theoretical approach used in this paper is based on the novel projector-based renormalization method (PRM). With respect to the periodic Anderson model, the method was before only employed in combination with the basic approximations of the well-known slave-boson mean-field theory. In this paper, the PRM treatment is performed in a more sophisticated manner where both mixed as well as integral valent solutions have been obtained. Furthermore, we argue that the presented PRM approach might be a promising starting point to study the competing interactions in CeCu2_{2}Si2_{2} and related compounds.Comment: 9 pages, 3 figures included; v2: completely revised and extended versio

    Analytical approach to the quantum-phase transition in the one-dimensional spinless Holstein model

    Full text link
    We study the one-dimensional Holstein model of spinless fermions interacting with dispersion-less phonons by using a recently developed projector-based renormalization method (PRM). At half-filling the system shows a metal-insulator transition to a Peierls distorted state at a critical electron-phonon coupling where both phases are described within the same theoretical framework. The transition is accompanied by a phonon softening at the Brillouin zone boundary and a gap in the electronic spectrum. For different filling, the phonon softening appears away from the Brillouin zone boundary and thus reflects a different type of broken symmetry state.Comment: 8 pages, 4 figures included; v2: completely revised and extended; v3: minor changes, final version, to be published in Eur. Phys. J.

    Renormalization of the periodic Anderson model: an alternative analytical approach to heavy Fermion behavior

    Full text link
    In this paper a recently developed projector-based renormalization method (PRM) for many-particle Hamiltonians is applied to the periodic Anderson model (PAM) with the aim to describe heavy Fermion behavior. In this method high-energetic excitation operators instead of high energetic states are eliminated. We arrive at an effective Hamiltonian for a quasi-free system which consists of two non-interacting heavy-quasiparticle bands. The resulting renormalization equations for the parameters of the Hamiltonian are valid for large as well as small degeneracy νf\nu_f of the angular momentum. An expansion in 1/νf1/\nu_f is avoided. Within an additional approximation which adapts the idea of a fixed renormalized \textit{f} level ϵ~f\tilde{\epsilon}_{f}, we obtain coupled equations for ϵ~f\tilde{\epsilon}_{f} and the averaged \textit{f} occupation . These equations resemble to a certain extent those of the usual slave boson mean-field (SB) treatment. In particular, for large νf\nu_f the results for the PRM and the SB approach agree perfectly whereas considerable differences are found for small νf\nu_f.Comment: 26 pages, 5 figures included, discussion of the DOS added in v2, accepted for publication in Phys. Rev.

    Charge order induced by electron-lattice interaction in NaV2O5

    Full text link
    We present Density Matrix Renormalization Group calculations of the ground-state properties of quarter-filled ladders including static electron-lattice coupling. Isolated ladders and two coupled ladders are considered, with model parameters obtained from band-structure calculations for α′\alpha^\prime-NaV2_2O5_5. The relevant Holstein coupling to the lattice causes static out-of-plane lattice distortions, which appear concurrently with a charge-ordered state and which exhibit the same zigzag pattern observed in experiments. The inclusion of electron-lattice coupling drastically reduces the critical nearest-neighbor Coulomb repulsion VcV_c needed to obtain the charge-ordered state. No spin gap is present in the ordered phase. The charge ordering is driven by the Coulomb repulsion and the electron-lattice interaction. With electron-lattice interaction, coupling two ladders has virtually no effect on VcV_c or on the characteristics of the charge-ordered phase. At V=0.46\eV, a value consistent with previous estimates, the lattice distortion, charge gap, charge order parameter, and the effective spin coupling are in good agreement with experimental data for NaV2_2O_5$.Comment: 7 pages, 9 figure

    On the Geometry and Homology of Certain Simple Stratified Varieties

    Full text link
    We study certain mild degenerations of algebraic varieties which appear in the analysis of a large class of supersymmetric theories, including superstring theory. We analyze Witten's sigma-model and find that the non-transversality of the superpotential induces a singularization and stratification of the ground state variety. This stratified variety (the union of the singular ground state variety and its exo-curve strata) admit homology groups which, excepting the middle dimension, satisfy the "Kahler package" of requirements, extend the "flopped" pair of small resolutions to an "(exo)flopped" triple, and is compatible with mirror symmetry and string theory. Finally, we revisit the conifold transition as it applies to our formalism.Comment: LaTeX 2e, 18 pages, 4 figure

    Optical conductivity of wet DNA

    Full text link
    Motivated by recent experiments we have studied the optical conductivity of DNA in its natural environment containing water molecules and counter ions. Our density functional theory calculations (using SIESTA) for four base pair B-DNA with order 250 surrounding water molecules suggest a thermally activated doping of the DNA by water states which generically leads to an electronic contribution to low-frequency absorption. The main contributions to the doping result from water near DNA ends, breaks, or nicks and are thus potentially associated with temporal or structural defects in the DNA.Comment: 4 pages, 4 figures included, final version, accepted for publication in Phys. Rev. Let

    Dominant particle-hole contributions to the phonon dynamics in the spinless one-dimensional Holstein model

    Full text link
    In the spinless Holstein model at half-filling the coupling of electrons to phonons is responsible for a phase transition from a metallic state at small coupling to a Peierls distorted insulated state when the electron-phonon coupling exceeds a critical value. For the adiabatic case of small phonon frequencies, the transition is accompanied by a phonon softening at the Brillouin zone boundary whereas a hardening of the phonon mode occurs in the anti-adiabatic case. The phonon dynamics studied in this letter do not only reveal the expected renormalization of the phonon modes but also show remarkable additional contributions due to electronic particle-hole excitations.Comment: 7 pages, 4 figures and 1 table included; v2: discussion of Luttinger liquid parameters adde

    PaaSword: A Holistic Data Privacy and Security by Design Framework for Cloud Services

    Get PDF
    Enterprises increasingly recognize the compelling economic and operational benefits from virtualizing and pooling IT resources in the cloud. Nevertheless, the significant and valuable transformation of organizations that adopt cloud computing is accompanied by a number of security threats that should be considered. In this position paper, we outline significant security challenges presented when migrating to a cloud environment and propose PaaSword - a novel holistic framework that aspires to alleviate these challenges. Specifically, this proposed framework involves a context-aware security model, the necessary policies enforcement mechanism along with a physical distribution, encryption and query middleware

    On the Construction and the Structure of Off-Shell Supermultiplet Quotients

    Full text link
    Recent efforts to classify representations of supersymmetry with no central charge have focused on supermultiplets that are aptly depicted by Adinkras, wherein every supersymmetry generator transforms each component field into precisely one other component field or its derivative. Herein, we study gauge-quotients of direct sums of Adinkras by a supersymmetric image of another Adinkra and thus solve a puzzle from Ref.[2]: The so-defined supermultiplets do not produce Adinkras but more general types of supermultiplets, each depicted as a connected network of Adinkras. Iterating this gauge-quotient construction then yields an indefinite sequence of ever larger supermultiplets, reminiscent of Weyl's construction that is known to produce all finite-dimensional unitary representations in Lie algebras.Comment: 20 pages, revised to clarify the problem addressed and solve
    • …
    corecore